Exam next Wednesday covering Chapters 15-17

Practice Exam on Website

Jana review tomorrow, Damon review Monday

Get Clickers, electric kit, meter stick, ruler

MiniLab: Magnetic field of current carrying wires

Turn in by Friday

Demo: Field of wire loop

$$\overline{dB} = \frac{\mu_0}{4\pi} \frac{\text{Idlx}}{r^2}$$

$$B_{\frac{7}{2}} = \frac{\ln 2\pi R^{2} I}{4\pi (2^{2} + R^{2})^{3} k}$$
 on axis only
$$\sum_{k=1}^{\infty} \frac{\ln 2\pi R^{2} I}{2\pi (2^{2} + R^{2})^{3} k}$$
 for $\frac{7}{2}$ $\frac{\ln 2\pi R^{2} I}{2\pi (2^{2} + R^{2})^{3} k}$ for $\frac{7}{2}$ $\frac{\ln 2\pi R^{2} I}{2\pi (2^{2} + R^{2})^{3} k}$ = Avec $\frac{\ln 2\pi R^{2} I}{2\pi (2^{2} + R^{2})^{3} k}$ = Avec $\frac{\ln 2\pi R^{2} I}{2\pi (2^{2} + R^{2})^{3} k}$

Discussion: Bar Magnets

$$\beta_2 = \frac{h_0}{4\pi} \frac{2h}{2^3}$$

magnetic dipole moments from spinning electrons

tend to point in same direction

Offerent domains have dipole moments pointing in different die

Q17.7e

A wire lies on top of a compass.

North

Top view, looking down on the table. C) East D) West

The compass deflects 12 degrees West. What is the direction of the magnetic field due to the current in the wire, at the location of the compass?

- A) North
- B) South

Q17.7f

Q17.7g

Top view, looking down on the table:

North (b)

Horiz. component of Earth's magnetic field: 2e–5 tesla

The compass deflects 12 degrees West. What is the magnitude of the magnetic field made by the moving electrons in the wire?

- A) 9.4e-5 tesla
- B) 2.0e-5 tesla
- C) 2.1e-6 tesla
- D) 4.3e–6 tesla

Q17.9a

M= I.A = 34x00.6m)2 Q17.10a Needle of compass at D points in what direction?

- A) 1
- B) 2 C) 3
- D) 4
- E) 5

- A) 1 B) 2 C) 3 D) 4 E) 5

Q17.10c If we cut a coil in half, so that each new coil has half as many turns as the original coil, what do you think we would get?

A. One coil with a North pole and one coil with a South pole

B. Two weaker coils, each with a North end and a South end
C. Two coils that don't make any magnetic field when current runs through them

Q17.10d If we cut a bar magnet in half, so that each new magnet is half as long as the original magnet, what do you think we would get?

A. One North piece and one South piece

B) Two weaker magnets, each with a North end and a South end

C. Two pieces that are not magnets (make no magnetic field)

No Such thing as a magnetic charge Q17.11a We estimated μ_{1atom} to be about 1 x 10^{-23} Am². The mass of the magnet is

The atomic mass of iron is 56. How do we predict the magnetic dipole moment of the

entire magnet?

A) $\mu_{1atom} * 0.013 \text{ kg}$

B) $\mu_{1atom}/0.013 \text{ kg}$

C) $\mu_{1\text{atom}} * 6.02\text{e}23$ D) $\mu_{1\text{atom}} * 13g * 6.02\text{e}23 / 56 g$ E) $\mu_{1\text{atom}} * 56 g / [13g * 6.02\text{e}23]$

VPython: B field of moving proton

Flying Protons